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There are four basic types of black holes (BH):

•Static (                        )
•Static Charged (                       )
•Rotating (                        )
•Rotating Charged (                       )

•To find solutions to the Schrödinger Equation to describe the 
behavior of a particle around a mini black hole  (BH)
•

 

To calculate the absorption cross section and bound states of 
nuclei by the mini BH.

These can be separated into:

• Star-collapsed BHs
• Mini BHs
• Galactic BHs

  J ≠ 0, Q = 0

  J = 0, Q = 0
J = 0, Q ≠ 0

J ≠ 0, Q ≠ 0

Goals



   

rs ≈ 1 fm ,  M � 1016 g ,  t ev � 1010 years,

Mini Black Holes: An overview

Right after the Big Bang, density irregularities in primordial space could have 
allowed for mini BH (on the order of Planck length or larger) to

 

form.

We consider quantum-interacting mini BH’s about 19 orders smaller than the BH 
our sun could create.

The evaporation time depends on

 

directly on mass and inversely on 
luminosity,

 

making it possible to know the properties of mini BH’s that 
could possibly be

 

detected today.



  

ds2 = (1−
rs

r
)c2dt2 −

dr 2

1−
rs

r

− r 2 (dθ 2 + sin2θ dϕ 2 )

In General relativity the observation depends on the adopted 
coordinate system.
A popular choice is the Schwarzschild metric

The Schwarzschild radius (event horizon) is:

rs =
2GM

c2

The  radial interval has an unphysical singularity at r = rs

This singularity means that a particle will never reach the event 
horizon!

The Coordinate System and Metric



   

ds2 = g00(r ,t)c2dt2 − 2g0icdtdxi − g ji (r ,t)dx jdxi ,

i, j = 1,2,3

To remove the Schwarzschild singularity we introduce 
Eddington-Finkelstein (E-F) coordinates with the contravariant 
and covariant tensors:
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The Generalized Metric:



In E-F metrics, we have:

  

ds2 = gμνdxμdxν = (1−
rs

r
)c2dt2 − 2

rsc
r

dt dr−(1+
rs

r
)dr2

−r2dΩ
This is a pseudo-Riemannian metric  with determinant

  
g =det gμν = −r 4 sin2θ < 0



Klein-Gordon (KG) equation for  a spinless

 

particle in 
Minkowski

 

(flat) spacetime

 

is:

   
h2gμν

∂
∂xμ

∂
∂xν Ψ =− m2c2Ψ

Its extension for a curved space is:

   
h2 1

−g
∂
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The Klein-Gordon Equation

where          is the Minkowski

 

flat-space metric tensor. 
gμν
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ψ ≡ψ(t,r,θ,ϕ)

The Klein-Gordon Equation

Expanding, we get (in the spherical coordinate system):

    ψ (t,r,θ ,ϕ) = e
i E
h

t
ψ (r,θ ,ϕ)

Looking for stationary solution



 

ψ ≡ψ (r,θ,ϕ )
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The Klein-Gordon Equation

 

ψ ≡ψ (r,θ,ϕ )
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We use nonrelativistic

 

limit and neglect terms with v/c

 

(and higher 
orders)

Non-relativistic equationNon-relativistic equation

This gives us the Shrödinger

 

equation in curved space.



Final radial Schrödinger Equation in curved space

ψ l (k,r) =
Ul (k,r)

kr

To obtain a simpler equation, we use:

We get the final Schrödinger Equation
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Imaginary Potential
Generated by curved space (rs)



Multiplying the Schrödinger equation by        and its complex conjugate 
by       and subtracting gives us particle conservation law

ψ *
ψ

 
j
r
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h

2m
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Where j is the current density-the number of particles crossing the unit area per second.
To get the particle flux through into the BH, we use Gauss’

 

theorem and integrate 
around the BH.
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The RHS of the upper equation is proportional to the absorption cross-section. 
V1

 

is the only part of the potential that doesn’t cancel!

Absorption Cross-Section



Absorption cross section
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Because VN

 

behaves like the Coulomb potential (VC), 
we can use and the Coulomb parameter (  ) to parametrize

 

our equation:η



Absorption cross section
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The mass gained by a BH going through the sun: 

  

ρ = 1
g

cm3

m = 1.66 ⋅10−24 g

N =
1

1.66 ⋅10−23 = 6.024 ⋅1023cm−3

λ =
1

Nσ
=

1
6.02 ⋅1023 *100 ⋅10−24 cm = 0.0166cm

forσ = 100b, R = 7 ⋅1010 cm

N =
2R
λ

= 8.44 ⋅1012

M = Nm = 1.4 ⋅10−11 g

N is the number of particles in the path, M is the accumulated mass.
The gain is negligible!

Where     is the density of the sun, m is the mass of a proton, and 1/N is the 
volume/proton.  The mean free path is

ρ

Number of protons  in cm



The Schrödinger Equation

We see that the repulsive V1

 

+V2  behaves more strongly than
the attractive Newtonian potential.This means that the field of the BH is 
Repulsive at the origin.



Perturbation Approach

To simplify calculations, for r greater than rs

 

, we assume that V1

 

+V2 can be considered as
a perturbation to VN

Doing this, we can get       as a solution to the Schrödinger equation.ψ

 

V1 � i(931.54MeV )
rs
r

2E

mc2

For E = 10MeV , V1 � −i136MeV
rs
r

V N � 470MeV
rs
r

V2 � 19MeV
rs
r

So, perturbation approach may not be accurate enough.

At large distances, the potential behaves like



Bound States
We continue our analogy to the Coulomb potential, and using the Hydrogen 
atom as our model we get the energy levels of a particle in a bound state with a 
mini BH:
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With orbital radii:

We consider r> rs

 

=1 fm and        less than the particle’s rest mass, and find that bound 
states of n=3 or higher are allowed. 
These have energies < 290MeV.

En

sr



To give this more physical context, we can compare terms using 
constants and some estimations.

To use a quantum mechanical approach, the Schwarzchild

 

radius of the black 
hole and the wavelength of a particle around it must be of comparable size.
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h
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v2
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mc2

mv2
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mc2
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For a nucleon, the rest mass mc2=939MeV, so for increasing energy:

λ = 0.2118 fm
939MeV

2(0.01MeV )
= 45.89 fm

λ = 0.2118 fm
939MeV

2(0.1MeV )
= 14.51 fm

λ = 0.2118 fm
939MeV

2(1MeV )
= 4.59 fm

The smaller the BH (and the particle it interacts with), the larger its energy! 



A future look at mini black holes

Cosmological relevancy:

CERN mini BH’s

 

from high-energy collisions hope to give us more 
information about the universe just after the Big Bang.

NASA’s GLAST satellite has mini BH search on their horizon.

New Physics?

Mini BH’s

 

would violently evaporate the particles they’ve gradually 
accumulated in an amount of Hawking radiation inversely proportional 
to the mass of the BH. In this model, particles interact quantum

 
mechanically in the relativistic space-time of a mini BH, making it a 
possible setting to study exciting new physics like quantum gravity.
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Schrödinger Equation
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Here, l is the orbital angular momentum
H is the Hamiltonian, Ep is the energy
Of the particle, and T is the kinetic ene
operator



The Schrödinger Equation in curved space

Since the generalized potential depends on l, we assign index l to the radial wave function: 
and

A positive centrifugal potential is repulsive, and represents a particle coming out of the BH.

Partial wave expansion of the wave function

where is the Legendre polynomial
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